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Abstract

Reasoning language models generate long rea-
soning traces that increase latency and cost. We
study how to shorten these traces while preserv-
ing accuracy on competition-level mathemat-
ics. We compare three approaches in a teacher-
student distillation setup: (i) inference-time
truncation after the first k tokens; (ii) Implicit
Chain-of-Thought (ICoT)-style curricula that
progressively shorten the teacher trace during
training; and (iii) direct distillation to shorter
reasoning traces. Using NUMINAMATH 1.5
with reasoning traces from DEEPSEEK-R1 and
QWQ-32B, we train QWEN2.5-7B and mea-
sure accuracy against total tokens generated.
We find: (1) with standard SFT and first-k
truncation, models compensate by generating
longer text after reasoning, undermining token
savings; (2) ICoT-style curricula provide little
benefit on competition-level mathematics with
long, diverse reasoning traces; and (3) training
on post-think (text the teacher generates after
reasoning) outperforms generic summaries by
4–5 percentage points at matched token bud-
gets. These results show that curriculum-based
methods that are effective on simple tasks do
not transfer to complex reasoning, while post-
think provides a better distillation target be-
cause it preserves the teacher’s solution path.

1 Introduction

Reasoning language models generate long chain-
of-thought traces to solve hard problems, trading
latency and cost for accuracy. In many applica-
tions this trade-off is unacceptable: decoding thou-
sands of tokens slows inference, increases serving
cost, and degrades user experience. Furthermore,
generating more tokens can even hurt performance
through overthinking (Hassid et al., 2025). We seek
to ask: how can we shorten or eliminate reasoning
traces while preserving accuracy?

*Work done during internship at Abridge.

Prior work has shown that curriculum-based
internalization can reduce reasoning length. Im-
plicit Chain-of-Thought - Stepwise Internalization
(referred to throughout this paper as ICoT-SI or
merely ICoT) (Deng et al., 2024) progressively
shortens reasoning chains during training, allowing
models to internalize computation and eventually
answer without explicit reasoning. It works well on
GSM8K and multiplication—both tasks with short
(≲200 token), structured traces. COCONUT (Hao
et al., 2024) extends this approach by replacing
textual reasoning tokens with a small number of
learned latent tokens. These methods are attractive
because they eliminate reasoning tokens at infer-
ence time. However, they have only been shown to
work on simple tasks with homogeneous reasoning
patterns. We test whether they scale to competition-
level mathematics, where reasoning traces are long
(∼5,000 tokens), diverse, and exploratory. We find
that ICoT-style curricula provide little benefit over
direct distillation on these tasks, indicating that the
success of these methods on short, structured traces
(GSM8K, multiplication) does not extend to long,
exploratory traces.

Specifically, we use a teacher-student distillation
setup with reasoning traces from DeepSeek-R1 and
QwQ-32B. We first establish a baseline by distill-
ing on full traces then truncating at inference time
after the first k tokens, which shows how accuracy
degrades as reasoning shortens. We then test ICoT-
style curricula that progressively remove segments
of the reasoning trace during training. Despite
their success on simple tasks, curricula provide lit-
tle benefit: accuracy is no better than the baseline
curve established by inference-time first-k trunca-
tion (Figure 3).

We then explore direct distillation of the student
model with fully shortened reasoning traces. We
test several distillation target strategies: teacher-
generated summaries at different lengths, first-k
tokens of the original teacher trace, and post-think



Simple tasks ✓ ICoT succeeds

Multiplication
Input: 23× 17 =?

CoT: 1 6 1 + 2 3 0 ( 3 9 1 )

Answer: 391

CoT length: ∼20 tokens

GSM8K
Input: Weng earns $12/hr. She worked 50 min. How much?
CoT: 12/60=0.2; 0.2*50=10

Answer: 10

CoT length: ∼50 tokens

Complex tasks × ICoT fails

NuminaMath (competition math)
Input: Find all positive integers n such that n2 + 1 divides n3 + n2 − n− 15

Reasoning: Let me try the quadratic formula... wait, that gives complex roots. Maybe completing
the square? No, let me reconsider the constraints. Actually, if I do polynomial division: n3 +
n2 − n − 15 = (n2 + 1) · q(n) + r(n)... Hmm, the remainder is −2n − 14. So I need n2 + 1 to divide
2n+ 14. But n2 + 1 > 2n+ 14 for n ≥ 4, so... [continues for thousands of tokens]
Answer: 2

Reasoning length: ∼5,000 tokens

Figure 1: The complexity gap. ICoT progressively removes reasoning steps during training. This succeeds on short,
structured traces (∼20–50 tokens). Competition math reasoning is ∼100× longer (∼5,000 tokens) and involves
exploration and backtracking with no obvious discrete segments to remove.

(text the teacher generates after the </think> to-
ken but before the final boxed answer). Training
on post-think outperforms generic summaries by
4–5 percentage points at matched token budgets.

Throughout, when we compare methods at a
fixed token budget, we mean the total number of
tokens decoded at inference time, including any
continuation after the end-of-thinking marker (e.g.,
post-think text after </think>). This matters be-
cause models, when forced to use less reasonining,
“compensate” by generating much longer post-think
traces.

We make three contributions:

• We show that inference-time first-k truncation
can mislead about efficiency: models compen-
sate by generating longer post-think text. Vis-
ible reasoning shrinks, but total token count
remains high.

• We reveal a boundary for internalization meth-
ods: ICoT-style curricula that succeed on
short, structured traces (GSM8K, multiplica-
tion) fail on long, exploratory traces charac-
teristic of competition-level mathematics.

• We show that post-think (text generated after
the </think> token) is a better distillation
target than generic summaries, outperforming
them by 4–5 percentage points at matched
token budgets. We attribute this to post-think
preserving the teacher’s solution path.

2 Related Work

Most significant improvements in language model
performance over the past several years have come
at the expense of increased inference-time latency
and cost. From chain-of-thought prompting (Wei
et al., 2023; Kojima et al., 2023) to self-consistency
decoding (Wang et al., 2023) to more recent work
in scaling reasoning models, many methods in-
crease inference-time token generation. In re-
sponse, a growing body of work has sought to
improve the token-efficiency of reasoning models.

2.1 Implicit, and latent, reasoning.
One line of work aims to internalize or compress
reasoning within the language model itself, so
fewer or even no reasoning tokens are decoded
during inference. Stepwise internalization (ICoT-
SI) trains models to generate answers directly by
iteratively removing reasoning tokens, using a
curriculum-learning approach (Deng et al., 2024).
Similarly, COCONUT replaces reasoning tokens
with a small number of continuous hidden represen-
tations that are never decoded directly (Hao et al.,
2024). While both approaches show improvement
over standard no-reasoning fine-tuning, they under-
perform full-length reasoning and are only tested
on relatively simple tasks with short (∼200 token),
structured reasoning traces, like multiplication and
GSM8K. CODI (Shen et al., 2025) then further im-
proves on this line of work by compressing CoT



into a continuous latent space via a single-step
self-distillation and matches the performance of
full-length CoT on GSM8K while using far fewer
tokens. They further show their method can be
applied to CommonsenseQA, a slightly more com-
plex and realistic task.

However, these approaches have only been val-
idated on tasks with relatively homogeneous rea-
soning patterns. Whether internalization scales to
domains with long (∼5,000 token), heterogeneous,
exploratory reasoning traces (such as competition-
level mathematics) remains an open question. Re-
lated approaches include KPOD (Feng et al., 2024),
which distills keypoint tokens with progressive cur-
ricula, and on-policy methods like GKD (Agarwal
et al., 2024), which train on student-generated out-
puts to address distribution mismatch. These are
complementary to our focus on compression tar-
gets; combining them with post-think training is a
promising direction for future work. In this work,
we test ICoT-style curricula on competition-level
math problems, adapting their curriculum approach
with key adjustments for our setting of longer, more
varied traces.

2.2 Length control, budgeted decoding, and
early exit.

A second line of work seeks to regulate how much
a model thinks during training or inference.

Training-time. Xiang et al. use reinforcement
learning with adaptive length penalties to produce a
policy that generates shorter reasoning traces while
preserving answer quality (Xiang et al., 2025).
Budget Guidance learns a token-by-token predic-
tor of remaining “thinking length,” softly steering
decoding to hit a target budget (Li et al., 2025).
Token-Budget-Aware Reasoning predicts an opti-
mal token budget for an (LLM, problem) pair and
uses it to attach an explicit budget in the prompt
(Han et al., 2025).

Inference-time. Concise-CoT prompting shows
that brief, targeted reasoning often suffices on many
problems (Renze and Guven, 2024). Most directly,
Hassid et al. (2025) find that the shortest among
parallel chains is frequently the most accurate and
propose stopping when the first m chains finish.
DEER (Yang et al., 2025) monitors transition cues
(e.g., “wait”/branch points) and cuts off generation
once a confident trial answer emerges, yielding 20
to 80% shorter traces with some small accuracy
gains.

While both training-time and inference-time ap-
proaches can be effective at reducing reasoning
length and preserving performance on complex
tasks, they do not lead to the aggressive reductions
in reasoning length that we are targeting. Further-
more, many of these approaches either require ex-
pensive RL training or additional inference-time
components, which can render them impractical.

2.3 Distilling reasoning ability.

Our teacher–student setup aligns with distilling
step-by-step rationales (Hsieh et al., 2023; Shridhar
et al., 2023) and STaR-style self-taught reasoning
(Zelikman et al., 2022). Prior works mostly distill
full rationales; in this work we focus on distilla-
tion with shorter reasoning traces to yield better
efficiency for the student model.

3 Methods

We study several approaches for how to shorten
inference-time thinking while preserving answer
accuracy on competition-level math.

3.1 Task & Dataset

We use NUMINAMATH 1.5, a dataset of
competition-level mathematics problems drawn
from olympiads and contests, covering algebra, ge-
ometry, number theory, and combinatorics. Prob-
lems typically require multi-step proofs or deriva-
tions. We use reasoning traces from two teacher
models.

For DeepSeek-R1, we use a subsample of Nu-
minaMath 1.5 included in the OPENR1-MATH

dataset, which includes 93k problems paired with
full reasoning traces and correct solutions gener-
ated by DeepSeek-R1. For QwQ-32B, we use pre-
generated traces on the same problem set. For both
teachers, we select 10k problems and split them
into 8k training, 1k validation, and 1k test, ensur-
ing matched problem sets across teachers for direct
comparison. For each teacher model, we obtain
responses of the following form:

[problem]
<think>[reasoning]</think>
[post-think]
\boxed{[answer]}

We use the boxed formatting standard to indi-
cate the answer to the problem, making it easier to
systematically extract.



Post-think. We observe that all generations from
the teacher models contain a thinking trace in-
side <think>...</think> tags, followed by a post-
think section: text generated after the </think>
token but before the final boxed answer. Unlike
the exploratory reasoning inside the thinking trace,
post-think text is a concise, answer-directed expla-
nation. The teacher has already solved the problem
and is now explaining its solution. This distin-
guishes post-think from generic summaries, which
compress the full reasoning trace via prompting
rather than arising naturally from the generation
process. Initial experiments showed no accuracy
difference between including or excluding post-
think when training on full reasoning traces. There-
fore, we train on reasoning-only traces (post-think
removed) for all experiments except those explic-
itly distilling post-think.

3.2 Reasoning Distillation

We use a pretrained (base, non-instruction-tuned)
Qwen2.5-7B checkpoint as our student model for
distillation. We initially experimented with other
student models but found them ineffective for our
setting. We conduct supervised fine-tuning with
LoRA applied to all layers of the model. We do
early-stopping based on the validation loss.

In particular, we tried base variants of Gemma
3 4B, Llama 3/3.1 8B, and OLMo 2 7B as stu-
dent models. We did not use them in the main
experiments due to practical issues: Llama variants
achieved extremely low accuracy (below 5%) even
when trained with full thinking traces; we did not
investigate the cause. OLMo 2 7B is constrained
by a 4,096-token context length which is too short
for our task, and Gemma 3 4B training was pro-
hibitively slow and expensive under our available
compute.

3.2.1 Approaches Overview
We compare three approaches for controlling or
shortening reasoning length.

First-k truncation (inference baseline). At test
time we append </think> after k reasoning tokens
for k ∈ {50, 100, 250, 500, 1000, 1500}. This
sweep over the value of k yields a baseline accu-
racy–generation length curve.

ICoT-style curriculum learning. We progres-
sively shorten traces during fine-tuning to encour-
age internalization (Deng et al., 2024). The original
ICoT work iteratively removes the leftmost token

from the thinking trace until there are none left.
While this approach is feasible in the simpler tasks
explored in that work (N×N multiplication and
GSM8K), our traces are much longer (often thou-
sands of tokens) and lack the regular step-by-step
structure of arithmetic, making token-by-token re-
moval infeasible. Instead, we test four alternative
curriculums better suited for our task and more
generalizable to other real-world settings:

• First-k tokens curriculum: progressively
training on shorter prefixes of the thinking
trace (k=1500, 1000, 500, ..., 0 tokens).

• Left-to-right segment removal: left-to-right
deletion of contiguous segments inside the
thinking trace.

• Random segment removal: random deletion
of contiguous segments inside the thinking
trace.

• Iterative summarization: replacing removed
segments with increasingly shortened teacher-
generated summaries (see Appendix A for
more information on the distribution of
lengths of these summaries).

Direct distillation to shortened traces. As a
non-curriculum alternative, we use direct distilla-
tion: first train on full reasoning traces, then con-
tinue training on a single shortened target (rather
than progressively shortening through multiple
stages). We test the following shortened targets:

• Teacher-generated summaries at six compres-
sion levels, where level 1 is longest and level
6 is shortest. Levels 1–3 (median 335–664
tokens for R1) are most comparable to post-
think length; see Appendix A for token distri-
butions.

• Official solution explanations from the origi-
nal NuminaMath 1.5 dataset.

• First-k tokens of the reasoning traces.

• The post-think section from the teacher mod-
els.

3.2.2 Segment-Removal Curricula
Intuitively, we split each reasoning trace into seg-
ments (separated by double newlines) and progres-
sively remove segments across training stages. At
each stage, the student trains on whatever segments
remain.



Symbol Meaning

B Total curriculum step budget (before no-
thinking)

∆ Segments removed per stage
κ Max total segments removed before no-

thinking
S Number of removal stages, S = ⌈κ/∆⌉
N (t) Steps per stage, N (t) = ⌊B/S⌋

Table 1: Curriculum schedule summary. Hyperpa-
rameters for segment-removal curricula.

Let a teacher reasoning trace inside the
<think> . . . </think> tags be split by double new-
lines (\n\n) into

T = ⟨s1, s2, . . . , sM ⟩.

We index curriculum stages by t ∈ {0, 1, 2, . . .}.
Each stage is defined by a binary mask m(t) ∈
{0, 1}M , where m(t)

i = 1 if si is kept at stage t and
0 otherwise. Then, the target distillation trace is

Y (t) = Concat
(
{ si : m

(t)
i = 1 }

)
.

We initialize with m(0) = 1 (all segments kept).

Budgeting and stage schedule. All curricula
start from a student model trained on full reasoning
traces (without post-think), ensuring a fair com-
parison across methods. We summarize the key
curriculum hyperparameters in Table 1. We fix a
total curriculum training budget of B training steps
(before the final no-thinking phase) and a step size
∆ controlling how many segments are removed per
stage. Following Deng et al. (2024), we cap total
removals at κ segments; after reaching κ we drop
all remaining thinking tokens and continue training
on problem→ answer only until convergence. We
choose κ and ∆ such that the curriculum covers the
full reasoning trace for most examples while main-
taining a fixed number of stages (and thus fixed
training time). Let S = ⌈κ/∆⌉ be the number of
removal stages. We split B evenly so each stage
uses

N (t) =
⌊
B/S

⌋
steps.

3.2.3 Iterative Summarization Curricula

We shorten teacher traces by replacing them with
successively shorter, teacher-written summaries
that preserve important parts of the solution.

Target lengths. Let T be the full teacher
trace inside <think> . . . </think>. We de-
fine a schedule of target lengths, L =
⟨1500, 1000, 500, 250, 100, 50⟩, and design a
distinct prompt for each target to produce sum-
maries of roughly that length using the teacher
model.

Procedure. Starting from Y (0) = T , each stage
summarizes the previous stage’s trace to the next
target:

Y (t) = Summ
(
Y (t−1)

)
, t = 1, . . . , |L| − 1,

where Summ(·) denotes the teacher-generated sum-
mary targeting the next length in L. After the
ℓ = 50 stage we remove all remaining content
and train only on problem → answer pairs.

3.2.4 Additional Training Details
Following Deng et al. (2024), we implement re-
moval smoothing: at each stage, with probability
0.05 we randomly remove up to 5 additional seg-
ments to prevent overfitting to exact stage bound-
aries. We reset the optimizer state between stages.

3.3 Evaluation
To evaluate model performance, we do generation
with a temperature of 0.3 and maximum length of
10000 tokens. We train the student model to output
its final answers using \boxed{} formatting and
use HuggingFace’s math-verify tool to evaluate
its accuracy against ground-truth solutions.

4 Results

Summary. (1) Naive first-k truncation can over-
state efficiency because hidden post-think continua-
tion after </think> undermines compute savings;
(2) excluding post-think from training exposes a
clear length–accuracy trade-off; (3) ICoT-style cur-
ricula provide little to no benefit over direct dis-
tillation on long, heterogeneous traces; and (4)
post-think delivers the best accuracy at matched
budgets.

4.1 Inference-time truncation misleads on
efficiency

We first examine what happens when post-think
text is included in training. With standard SFT that
includes post-think, truncating reasoning after the
first k tokens at inference time appears to preserve
accuracy. However, models compensate by generat-
ing longer text after the </think> token, so shorter



Trace generation model DeepSeek-R1 QwQ-32B

Method Acc. Tokens Acc. Tokens

Baselines
Full trace (no post-think) 0.292 6,974 0.293 9,131
No thinking 0.081 9 0.112 9

ICoT-style curricula (final stage)
First-k tokens curriculum 0.081 9 0.101 8
Iterative summarization 0.102 102 0.120 90
Left-to-right removal 0.071 46 0.086 91
Random removal 0.101 239 0.079 238
COCONUT (Hao et al., 2024) 0.042 6 - –

Direct Distillation
Official solution 0.090 274 0.090 274
Summary level 1 0.187 664 0.168 1,912
Summary level 2 0.145 477 0.211 1,145
Summary level 3 0.134 335 0.164 453
Post-think 0.185 511 0.183 541

Table 2: Key results on Qwen2.5-7B across two teacher models. Median total tokens reported. ICoT-style
curricula show final-stage results. Summary levels 1–3 are most comparable to post-think length (see Appendix A
for other levels). Post-think achieves the best accuracy-efficiency trade-off. See Appendix C for COCONUT details.

Figure 2: Models compensate for truncated reason-
ing. When we truncate reasoning at inference time,
models generate longer post-think text. As reasoning
length decreases, post-think length increases, keeping to-
tal token count high. This compensation undermines the
apparent token savings from shorter reasoning. Results
shown for DeepSeek-R1; QwQ shows similar patterns.

reasoning does not reduce total tokens (Figure 2).
Post-think grows as thinking shrinks, undermining
token savings. This pattern holds for both R1 and
QwQ teacher traces (Table 2).

4.2 Removing post-think from training
reveals the length-accuracy tradeoff

Given this compensation effect, we exclude post-
think from all subsequent experiments. This yields
a clear baseline: accuracy decreases as reasoning
length decreases, with a sharp drop when reasoning
is removed entirely (Figure 3 and Table 2). This

Figure 3: Accuracy decreases as reasoning short-
ens. When we train without post-think and vary reason-
ing length with first-k truncation, accuracy decreases
monotonically with a sharp drop when reasoning is re-
moved entirely. Dashed horizontal lines indicate full-
thinking distillation (upper) and no-thinking distillation
(lower) baselines. Results shown for DeepSeek-R1;
QwQ shows similar patterns.

establishes the baseline trade-off for comparing
training-based shortening methods.

4.3 ICoT-style curricula provide little benefit

We compare four ICoT-style curricula (first-k to-
kens, left-to-right removal, random removal, and
iterative summarization) against direct distillation.
Curricula provide little benefit—several perform
no better than the no-thinking baseline (Figure 4a
and Table 2). Varying the schedule or removal rate
yields similar results, with no consistent benefit.



(a) ICoT-style curricula fail to internalize reasoning, achiev-
ing final no-think accuracy on par with a no-think baseline.
Curriculum choice matters little. Accuracy vs. total tokens for
four curricula (first-k tokens, left-to-right removal, random
removal, iterative summarization). Dashed horizontal lines in-
dicate full-thinking (upper) and no-thinking (lower) baselines.

(b) Post-think summary outperforms other distillation tar-
gets. Accuracy vs. total tokens for direct distillation meth-
ods; iterative summarization curriculum included as the best-
performing ICoT-style method (see panel a). Post-think sum-
mary achieves the best accuracy–length trade-off. Dashed
horizontal lines indicate full-thinking (upper) and no-thinking
(lower) baselines.

Figure 4: Comparing shortening methods. (a) ICoT-style curricula show no consistent benefit over direct
distillation. (b) Post-think summary achieves the best accuracy-efficiency trade-off among all methods. DeepSeek-
R1 teacher traces shown; QwQ exhibits similar patterns.

COCONUT (Hao et al., 2024), which replaces
reasoning tokens with latent representations, pro-
vides further evidence. Adapting it to our longer
traces by removing segments rather than tokens,
we find it achieves only 4.2% accuracy (compared
to 29.2% for full traces and 8.1% for no reasoning;
see Table 2 and Appendix C). Combined with our
curriculum results, this indicates that internaliza-
tion methods effective on short, structured traces
(GSM8K, multiplication) do not extend to long, ex-
ploratory traces characteristic of competition math.
Results are consistent across both teachers where
available.

4.4 Post-think outperforms generic
summaries at matched budgets

We train students to generate the teacher’s post-
think. At matched token budgets, post-think
achieves higher accuracy than generic summaries
(Figure 4b and Table 2), representing an improve-
ment of 4–5 percentage points. This holds across
both teachers, showing that post-think transfers bet-
ter than generic summaries.

Training on official solution explanations from
NuminaMath 1.5 (human-written, answer-directed
explanations independent of the teacher’s reason-
ing) achieves only 9% accuracy. This is similar to
the no-thinking baseline and much worse than post-
think (18.5%), despite official solutions also being
answer-directed. This gap suggests that answer-

directedness alone does not explain post-think’s
effectiveness; we return to this in Discussion.

4.5 What makes a good summary?

Summaries of similar length can differ substan-
tially in accuracy. The contrast between post-think
(18.5%) and official solutions (9%) shows that
answer-directedness alone is insufficient. Proper-
ties beyond length and answer-directedness deter-
mine effectiveness; we analyze this in Discussion.

5 Discussion

5.1 Why do curricula fail on competition
math?

ICoT-style curricula and latent reasoning methods
that work on simple benchmarks fail on compe-
tition math. COCONUT performs no better than
SFT without reasoning (Appendix C), and curricula
show little benefit despite working well on GSM8K
(Deng et al., 2024; Hao et al., 2024). We hypoth-
esize two reasons: (1) competition math has long,
diverse reasoning traces (∼5,000 tokens vs. ∼200
for GSM8K) with high variance in structure, mak-
ing it hard to identify which segments to remove;
(2) internalization may be difficult in this setting be-
cause solutions often require exploration and back-
tracking that cannot be compressed into a short
sequence or internalized into the model’s hidden
states.



5.2 Why post-think outperforms generic
summaries

Post-think outperforms teacher-generated sum-
maries at matched token budgets as a distillation tar-
get (Figure 4b, Table 2). We hypothesize that this
difference stems from differences in the contextual
roles of post-think and a standard post-hoc sum-
mary; post-think is generated as a natural continua-
tion of the teacher’s reasoning process and scales
up as the reasoning trace is limited–indicating that
it is in some sense a key final step to producing the
final boxed answer.

Summaries, by contrast, require artificially com-
pressing traces which may disrupt the reasoning
structure by reordering, merging, or omitting inter-
mediate conclusions. Prior work on step-by-step
distillation supports the intuition that preserving
this structure distills reasoning more effectively
than alternatives (Hsieh et al., 2023; Shridhar et al.,
2023).

Evidence from official solutions. The poor per-
formance of official solutions (9%) provides the
strongest support for this hypothesis. Official solu-
tions are also answer-directed, written with knowl-
edge of the answer, yet they perform comparably
to the no-thinking baseline (8%). The key differ-
ence is that official solutions use human problem-
solving approaches that differ from the teacher’s.
This suggests that successful distillation requires
more than knowing the correct answer: the target
must reflect a solution path the student can learn
to reproduce from the teacher’s outputs. Post-think
succeeds because it recapitulates the teacher’s own
successful reasoning; official solutions fail because
they introduce different computational patterns.

6 Conclusion

We study how to shorten reasoning traces while
preserving accuracy on competition math. We com-
pare three approaches: inference-time truncation,
ICoT-style curricula, and direct distillation to short-
ened targets.

We find: (1) first-k truncation misleads because
models compensate with longer post-think text, un-
dermining token savings; (2) ICoT-style curricula
provide little benefit on long, diverse traces, un-
like their success on simple tasks; (3) training on
teacher post-think outperforms generic summaries
by 4–5 percentage points at matched budgets.

Future Work

First, analyzing what makes post-think effective
could inform better summary strategies. Second,
testing these methods on other domains (code, sci-
entific reasoning, commonsense) would test gener-
alization. Third, combining post-think with ICoT-
style curricula may yield further gains. Finally,
mechanistic interpretability could reveal whether
post-think training internalizes reasoning or pattern-
matches surface features (Bai et al., 2025).

Limitations

We focus on competition math; generalization to
other domains (code, commonsense reasoning) re-
mains to be tested. While we observe consis-
tent patterns across two teachers (DeepSeek-R1
and QwQ-32B), post-think effectiveness may vary
with teacher quality. We use 7B parameter stu-
dents; whether larger students can internalize long
traces where smaller ones cannot is unclear. We
report single runs; replication across seeds would
strengthen statistical conclusions. Our segment-
level COCONUT adaptation trades token-level gran-
ularity for tractability; alternative adaptations may
yield different results. Our hypothesis about why
post-think outperforms summaries is supported by
indirect evidence (the official solutions compari-
son), but controlled experiments could isolate the
specific properties that drive this advantage.
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A Summary Level Token Distributions

We generate summaries at six different target
lengths using iterative prompting with teacher mod-
els (DeepSeek-R1 and QwQ-32B). These sum-
maries are used in two contexts: (1) for the iterative
summarization curriculum, where we progressively
train on shorter summaries, and (2) for direct distil-
lation, where we train directly on a single summary
level. Figures 5 and 6 show the token count distri-
butions for each summary level across the training
set for both teacher models.

The summary levels represent progressively
shorter compressions of the original reasoning
traces. As shown in the histograms, there is con-
siderable variance in summary lengths within each
level, reflecting the diversity of problem complex-
ity in the dataset. The vertical dashed lines indicate
the median token counts for each level, demonstrat-
ing that the summarization process successfully
achieves progressively shorter targets while main-
taining some flexibility based on problem difficulty.

For our main results (Table 2), we report levels
1–3 as they are most comparable in length to post-
think, which has median token counts of 511 (R1)
and 541 (QwQ).
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Figure 5: Token distributions for DeepSeek-R1 sum-
mary levels. Each level represents progressively shorter
summaries, with vertical dashed lines indicating median
token counts.
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Figure 6: Token distributions for QwQ-32B summary
levels. Each level represents progressively shorter sum-
maries, with vertical dashed lines indicating median
token counts.

Figure 7: Post-think outperforms generic summaries
at equal length. Accuracy vs. total tokens; post-think
distillation dominates at matched budgets. Dashed
horizontal lines indicate full-thinking (upper) and no-
thinking (lower) baselines. Results shown for both
teachers in Table 2.

B Curriculum Details

B.1 Segment-Removal Hyperparameters

For segment-removal curricula (left-to-right and
random removal), we set κ = 105 and ∆ = 7,
yielding 15 removal stages plus a final no-thinking
stage. We chose these values to balance training
time and trace coverage: increasing both κ and
∆ proportionally maintains the same number of
stages (and thus the same training budget) while
ensuring the curriculum covers the full reasoning
trace for most examples. With these settings, the
median trace (approximately 70 segments) reaches
zero remaining segments by stage 10, and the ma-
jority of traces are fully covered before the final
no-thinking stage.

B.2 Summarization Curriculum

C COCONUT Implementation Details

We attempted to replicate the COCONUT approach
(Hao et al., 2024) on our competition-level mathe-
matics dataset to evaluate whether latent reasoning
could provide an efficient alternative to explicit
reasoning traces.

C.1 Adaptation to Long Reasoning Traces
The original COCONUT method progressively re-
moves reasoning tokens during training, replacing
them with continuous latent representations. How-
ever, our reasoning traces are significantly longer
and more unstructured than those in GSM8K (av-
erage ∼5,000 tokens vs. ∼200 tokens). To adapt
the method to our setting, we made the following
modifications:

Segment-based removal. Instead of removing
individual tokens, we removed contiguous seg-
ments of text split by newline characters (\n). This
preserves local coherence within segments while
progressively reducing the explicit reasoning trace.

Limitations of this adaptation. Our segment-
level approach trades token-level granularity for
tractability on long traces. This modification may
not preserve properties essential to COCONUT’s
success on short-trace tasks; token-level removal
with longer context lengths could yield different re-
sults. We view our negative result as evidence that
straightforward adaptation fails, not that latent rea-
soning is fundamentally impossible for long traces.

C.2 Curriculum Structure
We use a 4-stage curriculum. At each stage, we
replace one additional reasoning segment with 2
latent tokens, progressively compressing explicit
reasoning into continuous representations. By the
final stage, 6 latent tokens replace the reasoning
trace entirely. This matches the latent token count
used in prior work on GSM8K (Hao et al., 2024).
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